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ABSTRACT

Using potentiokinetic techniques with the electrochemical
hysteresis method, experimental Pourbaix Diagrams were constructed
for a series of six oinary Fe-Cr alloys ranging in chromium content
from 0.5% to 24.9%. Thirty-six solution variables were employed
which included pHs from 4.5 to 11 inclusive and chloride contents
from nil to saturated at room temperature. In addition to estab-
lishing domains of non-corrosion, general corrosion and passivation,
the loci of zero current potentials, pitting potentials and protec-
tion potentials were determined as a function of pH, chloride ion

concentration and chromium content. Corrosion velocities were de-

termined for each region of the experimental diagrams.




INTRODUCTION

With the publication of the "Atlas of Electrochemical Equi-
iibria in Aqueous Solutions”(l) by M. Pourbaix which extended his
earlier work(ls), the literature on pure metals in aqueous solu-
tions is well developed. By contrast, very little work has been
done on alloy systems. A number of investigators have made elec-
trochemical measurements on iron alloys, ferrous materials contain-
ing chromium and nickel, titanium alloys and certain binary copper
alloys in aqueous solutions (for example, References 2 through 12
inclusive). These studies have provided valuable guidance to those
concerned with chemical inhibition of corrosion reactions and
formation of passive films on surgical implant materials, the es-
cablishment of conditions necessary for cathodic protection,
setting of control limits for anodic protection and so on.

Pourbaix Diagrams provide a basis for the expression of a
huge quantity of thermodynamic data in a relatively simple graphic
form. While these diagrams are of great qualitative usefulness,
they have important limitations. For example, (1) the equilibrium
diagrams provide no kinetic information, (2) only pure metals have
been studied in depth and (3) various assumptions are made regard-
ing solution composition which are not directly applicable to real
engineering situations.

Very few engineering structures are made of pure metals. Much )
of the corrosion data on the performance of metals in electrolytes |
is highly specific and quantitative. Materials are used 'because
they work' without a thorough understanding of the mechanisms in-

volved or of the controlling parameters. The research reported
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herein represents an attempt to construct Pourbaix Diagrams for
alloys of engineering interest. As part of this investigation,
electrochemical techniques were developed which now make it pos-
sible to construct experimental Pourbaix Diagrams for alloys. The
"Electrochemical Hysteresis' method used in these studies, extends
the usefulness of potentiokinetic techniques by providing informa-
tion on the so-called'Protection Potentiall‘a material property
believed to possess considerably more practical significance than
the'?itting Potentiaf'frequently referred to in the literature.
While the burden of the research effort has been with binary iron-
chromium alloys, many of the details of experimental technique and
data handling were evolved using the metalilurgically simplier
copper-nickel alloy system. Details regarding the copper-nickel
alloy investigations ure included in a Masters degree thesis en-
titled '"Use of Experimentally Determined Pourbaix Diagrams to
Elucidate the Role of Iron in the Passive Behavior of Copper-Rich
Alloys Containing Nickel'" by P. A. Parrish, University of Florida,

June 1970. Therefore, this information will not be included

herein.
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OBJECTIVE

The objective of this research is to support that area of ma-
terials technology related to advancing the science and performance
of high strength alloys in corrosive environments. In particular,
the research described herein has application to saline environments
such as experienced by materials immersed in sea water or boldly ex-
posed to the marine atmosphere. Under such conditions, it 1is custo-
mary to select special alleoys to resist general attack. Unfortu-
nately, however, such alloys may still be subject to localized forms
of attack, such as pitting, crevice corrosion or stress corrosion
cracking which may result in sudden, unexpected failure. Detailed
knowiedge of the limiting conditicns for immunity to these forms of
attack is vital to the specification of minimum measures necessary
for the avoidance of prematurc failure.

In the accomplishment of the research objective, it will be
necessary to: (1) devise an electrochemical methodology which will
provide the experimental evidence which will enable engineers to
predict the performance of alloys under stated conditions, (2) show
that the evidence so obtained can be explained on a thermodynamic
basis, and (3) present the evidence in a form which will make it im-
mediately available to engineers for use. While much work remains
to be done, information contained herein gives concrete evidence of

considerable progress in the accomplishment of these objectives.
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EXPERIMENTAL METHGD

Dr. Marcel Pourbaix has suggested a method for the construc-
tion of an experimental potential-pH diagram from potentiokinetic

(1’21). Figure la shows five such potentio-

polarization curves
kinetic polarization curves for Armco iron in chloride-free solu-
tions of several pHs. Figure 16 is the corresponding experimental
Pourbaix Diagram deduced from this series of curves. Figure 2a
shows potentiokinetic polarization curves for Armco iron in 1072
molar chloride solutions adjusted to a range of pH values. At the
potential r, the passivating film becomes locally non-protective
and pits are formed on the surface. This potential is referred
to as the Rupture or Pitting Potential. The potential p, at which
the current density reaches zero on the return scan is called the
Protection Potential. At this point, the potential difference be-
tween pitted areas and unpitted areas on the specimen surface is
approximately zero. Figure 2b is the experimental Pourbaix Dia-
gram constructed from these electrochemical hysteresis curves.
Notice that at pHs below about six no passivation occurs. A pro-
tection potential locus (as a function of pH) divides the passive
region into an upper area where pre-existing pits continue to be
active and a lower area where previously-formed pits no longer
grow, but in fact, heal over.

The electrochemical corrosion cell used in this research

shown in Figures 3a, 3b and 3c was adapted from designs by Myers(14)

and France(ls). The portions of the specimen holder exposed to the

electrolyte are fabricated from polycarbonate and Teflon* to avoid

* Trade name of E. I. DuPont de Nemours and Company, Incorporated.
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contamination. The specimen is designed so that only one square
centimeter of the sample material is exposed to the solution. A
Teflon gasket seals the specimen in place. Electrical continuity
is maintained through the back of the specimen via internal copper
parts.

The electrolyte is vacuum de-aerated prior to its introduc-
tion into the cell. During tests, the cell is constantly purged

with hydrogen gas. Saturated calomel is used as the reference !

electrode. The experimental apparatus, Figure 4, consists of a
scanning potentiostat, a logarithmic converter, X-Y recorder, re-
sistance selector box, differential amplifier and low pass RC fil-
ter. A detailed equipment list is provided in Table IX. The
resistance selector box is a modification of that described by

W. D. France, Jr. and R. W. Liety(16)

and extends the recording
range of the logarithmic recorder to nine cycles, thus facilitat-
ing automatic operation.

A current from the potentiostat to the auxiliary platinum
electrode is measured as a potential across the precision resistor
selected to provide the required logarithmic converter input volt-
age. Output from the logarithmic converter (current density) is
plotted on the X axis and the working electrode (specimen) poten-
tial versus saturated calomel is plotted simultaneously on the Y
axis. Potential is scanned from active to noble potential and
then a reverse scan (noble to active) is made over the same poten-
tial range. i

The electrochemical hysteresis method has been applied to a

series of six binary iron-chromium alloys ranging in chromium ron-
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tent from 0.5 to 24.9 weight percent. Table I lists the composi-
tions of the individual alloys. Thirty-six electrolyte composi-
tions were employed in this program. These were saline solutions
varying in pH from 4.5 to 11 with chloride content from nil to

saturation at room temperature. Table II delineates the environ-

T Wy

mental variables under tect. Under each condition of test, experi-

01 Kagser 1y

ments were repeated to assure reproducibility. Where applicable,

ASTM Recommended Practices and Conventions were utilized(17’18).
Specimens were mechanically polished through 4/0 emery paper

and ultrasonically cleaned in laboratory detergent prior to expo-

sure. The detailed configuration of potentiokinetic curves can be

B G YR AP X

influenced by the rate of scan. As a result of studies at various
scan rates ranging up to 130 millivolts per minute, it was decided
that the optimum scan rate would be between 40 and 50 millivolts
per minute. As a consequence, all scans were at 46.7 millivolts
per minute. All tests were conducted at room temperature and pres-
sure.

Corrosion velocities were determined from polarization data

(19,1).

using the method of Pourbaix Since the indicated corrosion

current density is strongly influenced by scan rate, the corrosion
velocities determined herein must be calibrated by other methods
before quantitative corrosion rates may be obtained. However,

since all experiments were conducted at the same scan rate, it is

possible to compare the relative corrosion behavior of the alloys.
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RESULTS

From potentiokinetic polarization curves using the electro-
chemical hysteresis method, it is possible to obtain the follow-
ing information. Zero current potential E,, primary passivation

potential E (also referred to as Epp)’ any secondary passivation

P

1

potentials Ep , pitting potential (or rupture potential) ER, pro-
2 .

tection potential Ep, and the corresponding current density asso-

ciated with each potential. This information was obtained for
each of the six alloys exposed under the various condit.cns of ex-
posure referred to in Table II. Tables III through Vi'l are tabu-
lations of this information for each of the experiments. Figures
5 through 12 show the characteristic configurations of the polar-
ization curves obtained for each of the six alloys.

The variation of the Zero Current Potential, the Passivation
Potentizl, the Rupture Potential and the Protection Potential
(where applicable) for four of the alloys as a function of chlor-

ide content in solutions of various pHs is shown in Figures 13

through 24.

This information is replotted and summarized on Potential
versus pH co-ordinates to show the locus of Zero Current Potentials
and Passivation Potentials as a function of chloride content. See
Figures 25 through 28. Similar curves on Potential versus phk co-

ordinates are shown in Figures 29 through 32 and illustrate the
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locus of Rupture Potentials and Protection Potentials for solu-

tions of a variety of chloride contents.

—t

The influence of varying chromium content in binary iron-

chromium alloys is shown in Figure 33. In this figure, the Zero
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Current Potential, the Passivation Potential and the Protection
Potential are compared.

Figures 34 through 37 show the effect of chloride ion con-
centration on the corrosion veloucity at the Primary Passivation

Potential, E for four alloys of the Binary Fe-Cr series as a

rp’
function of pH.

Figure 38 shows a family of curves for thz six iron-chromium
alloys showing the logarithm of the Primary Passivation Current-
density for each alloy as a function of the pH of the solution.
From this curve, it is possible to construct corrosion velocity
contours.

Figures 39 through 44 show the experimental Pourbaix Dia-
grams for each of six iron-chromium alloys. Corrosion velocities
are shown within the general corrosion region as the logarithm of
the current density. In the Passive region, Rupture Potentials
are shown as a function of chloride ion concentration and pH. In
this region, the numbers shown are the logarithms of the chloride
ion molarities. Protection Potentials are shown as a range. Pro-
tection Potential ranges tend to increase as chromium content in-
creases.

Figure 45 is a group of Schematic, Experimental Pourbaix Dia-
grams for the six alloys based on data from 0.1M chloride ion so-
lutions. This grouping permits '"side-by-side'" comparison of the

influence of chromium additions on the form of the diagrams.

For comparison, Figures 46 through 48 taken from the ”Atlas,"(l)

are included showing the equilibrium Pourbaix Diagrams for pure iron,

pure chromium in chloride-free solutions and pure chromium in the

presence of chlorides.

10
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DISCUSSION OF RESULTS

Foley has summarized the role of chloride ion in the corrosion

of iron(lo).

The present work adds significantly to the state of
knowledge regarding ferrous alloys in saline environments.

For all of the Fe-Cr binary alloys tested, the zero current
potential was a function of chromium content and pH but not of

chloride content of the solution. See Figures 25 through 28. In-

creasing chromium content shifted the location of the zero current

rotential locus in the noble direction (toward the equilibrium hy-

drogen evolution line on the Pourbaix Diagram), see Figure 33. The
crossing of the zero current lines for the 12 Cr and 16.9 Cr alloys
is considered open to question at this time.

The immunity potential for an alloy has been assumed to be the
potential at which the zero current potential line for that alioy
intersects the equilibrium hydrogen evolution line. For thermo-
dynamic reasons, the immunity potential line is drawn horizontally
and represents the boundary between general corrosion and non-
corrosion. Potentiostatic tests are required to verify the posi-
tion of the immunity potential locus. Chromium additions above 5%
extend the immunity range significantly.

The corrosion velocities at the Zero Current Potential are
shown in Figure 49. Although the calculated rates of corrosion are

low (at Eo) for all alloys tested, the spread in corrosion rate

08 AN ¢ R R e

spans one order of magnitude when comparing 0.5 Cr with the 24.9 Cr
alloy, the higher chromium alloy having the lower corrosion rate.
The primary passivation potentials also were functions of chrom-

ium content and pH but not of chloride ion concentration. Figure 33

: 11
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shows the family of passivation lines for the six Fe-Cr alloys
tested. The discontinuity in the passivation line for the 0.5 Cr
alloy (pH 7.5) is considered questionable at this time. The Passi-
vation Current Density for each alloy was tabulated from the poten-
tiokinetic polarization curves in the various electrolytes. For
each alloy, logarithm of the Passivation Current Density was plot-
ted against pH and a straight line was drawn through the data, Fig-
ures 34 through 37 inclusive. Except for the 2% Cr alloy for which
more scatter occurred, the data show that the current density at

the Primary Passivation Potential is independent of chloride con-

tent. The "second line'" shown on Figure 34 for the 0.5 Cr alloy,
is believed to show the tendency for crystalline salt to interfere
with the reaction in the saturated solution. Increasing chromium
content shifts the position of the passivation line to the left on
the Pourbaix Diagram and the slope becomes flatter. Both effects
extend the passive region.

Figure 38 compares the corrosion velocities at the Primary

Passivation Totential, E of the several alloys at various pHs.

pp’
As expected, differences in corrosion rate are most dramatically
shown at acid pHs where the corrosion rate for the 24.9 Cr alloy
is five orders of magnitude less than for the 0.5 Cr alloy at pH
4. In the alkaline solutions the corrosion rates converge to very
low values for all alloys tested as would be predicted from inspec-
tion of the Pourbaix Diagram for iron. Current densities recorded
during potentiokinetic polarization studies are influenced by the

scan rate. All experiments were conducted at a rate of 46.7 mv/min.

so that the data would be comparable. Calibration of the data us-

12
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ing gravimetric measurements would permit quantitative results.
Such calibrations were not included in this investigation since
the primary interest in corrosion velocity information was as a
basis for comparing alloys of a family.

Figures 29 through 32 inclusive, are experimental Pourbaix
Diagrams for four of the alloys showing the Zero Current Poten-
tials and Passivation Potentials (previously shown to be independ-
ent of chloride content), the Immunity Potential (assumed to be
independent of chloride), the Protection Potential (data points +)
and the Rupture Potentials (open circles). Numbers beside the data
points indicate the logarithm of the chloride ion molarity. The
Protection Potential for all alloys was between minus 0.200 and
minus 0.400 volts SHE and was independent of chloride ion concen-
tration. The Protection Potential has significance only in regard

(21’22). Accord-

to localized forms of corrosion such as pitting
ingly, those data points in the passive region should be considered
as Protection Potentials. Corresponding data points in the general
corrosion region show that the Zero Current Potential is the same
on the downward potential traverse as on the upward traverse, and
that it is insensitive to chloride ion concentration. The poten-
tial is seen to be within the scatter band of the protection po-
tential.

The rupture potentials (pitting potentials) for the Fe-Cr al-
loys are sensitive not only to alloy content and pH, but also are
strongly dependent on chloride content of the electrolyte. In-

creasing chloride content tended to lower the rupture potential.

See Figures 39 through 44. The rupture potentials in saturated
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solutions approached the protection potential. Scatter was great-
est for most dilute solutions. The limit of detection of chloride
by titration was slightly better than 10'6 molar, therefore, 'nil"
chloride was plotted as 10-6 molar. A number of the rupture pote:-
tial lines tend to be concave downward (i.e., the curves have a
"hump") in the pH range between about 8-9. Pourbaix suggests the
likelihood of a restricted region of passivation between pH = 8-9
caused by a film of chromic oxide in the presence of chloride on
the diagram for pure chromium in The Atlas. See Figure 48. It is
attractive to consider the possibility that the addition of chrom-
ium to iron leads to the formation of reaction products containing
both chromium and iron oxides. If this is true, perhaps the "humps"
in the curves are traceable to this. Comparison of Rupture Poten-
tials for the various alloys shows that ER shifts in the noble di-
rection as chromium increases. A later phase of the work will be
devoted to study of the composition and morphology of the reaction
product films using x-ray and SEM.

Apparently the range of variation of values for the protection
potential is far less than for the so-called pitting potential.
This suggests the possibility that the Protection Potential may be
a material property of more practical significance than tlL: Pitting
Potential which seems more sensitive to the method and conditions
of test. !

Figure 50 illustrates an additional use of the corrosion veloc-
ity trajectories beyond estimating the corrosion rate. The conver-
gence of the velocity contours may be used to fix the transition

pH at which the boundary between General Corrosion and Passivation

occurs.

[ ] - _— _ - ] ] - -—— [ — PSS - ] Ay o ;- ] ]
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It is of interest to conjecture under what conditions complex
icns containing chlorides (e.g., FeC1+*) may influence the form of
the Pourbaix Diagram. Thermodynamic information was not readily
available for several of the potential solid species, but informa-
tion was at hand for FeCl,, FeCl,, FeC1™ and C1°. From this data,
Mr. A. Pourbaix determined that the soluble species FeCl, and FeClq
would predominate over Fe'" and Fe''" only if the logarithm of the
chloride ion molarity exceeds +3.96. Considering that at satura-
tion the logarithm of the chloride ion molarity was only +0.8 for
NaCl, it may be concluded that FeClZand FeCl, do not predominate.
The ionic species FeC1++, by contrast, is shown to predominate over
Fe'**when the logarithm of the chloride ion molarity exceeds -1.48.
At lower chloride concentrations the diagram would be the same as
for chloride-free soluticns. The calculated limits for the region
of predominance of FeC1'" were established in the classical way

used in the construction of diagrams for soluble species(l).

Coexistence Species 0.1IM C1° 1.0M C1°
Fe'*/Fec1’” +0.791 Volt +0.682 V
FeC1* " /Fe(oH)™*" pH = 2.92 pH = 3.92
FeC1'"/Fe,04 pH = 1.92 pH = 4.76%
FeC1*"/Fe(OH) pH = 2.26 pH = 5.10%

FOR COMPARISON

++4

Fe /Fezo3 (in chloride-free solutions) pH = 1.8
Fe+++/Fe(OH)3 (in chloride-free solutions) pH = 4.3

As a result of these calculations it may be assumed that the

"corrosion triangle" is unaffected by chloride concentration.

15
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This is consistent with the experimental observation t:at the Zero
Current and Passivation Potentials as well as the corrosion vel-
ocities at these potentials were independent of chloride ion con-
centration.

The pHs marked with an asterisk(Mare within the range o’ pHs
employed in this investigation, but must be considered approximate
since the values were not corrected for any ionic interactions.
The vertical boundary between General Corrosion and Passivation
would be expected to be moved slightly to the right (increasing
the domain of General Corrosion somewhat) in chloride solutions
having a logarithm of chloride ion molarity greater than -1.48.
Mr. Pourbaix's calculations were based on pure iron; therefore,
application to Fe-Cr alloys must be made with care. However, they
provide important background for interpretation of the experimental
results. Further experiments will be required to test these con-

jectures.

16
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CONCLUSIONS

The following ccnclusions may be drawn from research to date.
Electrochemical hysteresis methods may be used to construct
experimental Pourbaix Diagrams for alloy systems.

The corrosion behavior of several alloys in a family may be
compared quickly and directly by use of these methods.

The corrosion rate may be estimated and included on the ex-
periental Pourbaix Diagram. These rates also may be used

to dotermine boundaries of various domains on the diagram.

The ero Current Potential, Passivation Potentials and Pro-
tection Potentials of six Fe-Cr binary alloys were independ-
ent of chloride ion concentration from nil to saturated.

The Zero Current Potentials and Passivation Potentials were
functions of alloy composition and pH.

The rate of corrosion for these binary Fe-Cr alloys decreases
as the chromium content increases (above 5% Cr).

The corrosion rate at the Primary Passivation Potential and
the Zero Current Potential is independent of chloride content,
but dependent on pH and chromium content.

With increasing chromium content, the locus of Zero Current
Potentials moves toward the equilibrium hydrogen line (to
more noble values).

With increasing chromium content the loci of Passivation Po-
tentials moves downward and to left and tend to have shallower
slopes, all of which restrict the area of the 'corrosion tri-
angle' and extend the passive pH range. The greatest improve-

ment is observed between 5 and 12% chromium. The General Cor-
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rosion region for alloys containing 16.9% chromium and above
is restricted to pHs below 7.

Increasing chromium content tends to extend the Immunity Re-
gion to more noble potentials.

The Pitting (or Rupture) Potential is dependent on alloy com-
position, pH and chloride composition in deaerated solutions.
It is likely that chromium oxide is strongly influential in
providing passivation since Rupture Potentials increase with
increasing chromium and "humps'" appear in Ep curves in the
vicinty of pH 8-9.

The concept of the Protection Potential, first proposed by
Pourbaix, appears to be of greater practical importance than
the pitting (or rupture) potential based on the independence
of the Protection Potential to chloride content, pH or chrom-

ium content.

18
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FUTURE WORK

In order to complete the study of these alloys so as to maxi-

are needed.

Potentiokinetic Studies

(1)

(2)

(3)

Extend the pH range covered to provide additional verifica-

tion of boundaries of the experimental diagram.

Apply present methods to pure iron, pure chromium and austem-

tic stainless steels to provide a '"bridge'" to the thermodynamic

data and to other alloys.

Investigate the influence of oxygen, carbon dioxide, etc., on

electrochemical behavior.

Potentiostatic Studies

(1)

(2)
(3)
(4)

Hold specimens at particular potentials and pHs so as to accu-

mulate sufficient reaction products for analysis.

Verify positions of Immunity Potentials.

Verify limits of Passivation range.

Verify that specimens held at or below the Protection Poten-
tial are not subject to localized attack or that pits will

"heal."

X-Ray and Scanning Electron Microscropy

(1)

(2)

Determine chemical analysis and/or chrystalline structure of
reaction products. Verify the influence of chromium in pro-
viding passivation.

Determine physical character and morphology of reaction

products.

19
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Mechanism of Crevice Corrosion and Pitting

(1) Construct simulated '"crevices' to determine influence of chrom-
ium additions on tendency for crevice corrosion.

(2) Test the predictions of Pourbaix regarding the significance
of the Protection Potential by monitoring the potential and
pH within the crevice as the exposed portion of the sample is
polarized to various potentials.

(3) Develop a test method in which pits (or crevices) could Le

electrically isolated from the balance of the specimen but

could be connected through measuring instrumentation. This

would permit measurement of current flow in addition to po-

tential and pH.
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Compositions of Rinary Tron-Chromium Alloys Under Test

TABLE

I

Alloy C Mn I S Si Cu Ni Cr Source
1 0.15 1.3 0.01110.037 §0.22§ 0.0000.12 0.5 1ISS
2 0.106 1.4 n.00810.022}----§10.0910.03 2.0 uss
3 0.10 1.4 0.010§0.02210.19710.09}0.04 5.0 Uss
4 0.15 .20 NA NA NA NA ---- §12-15 NRL
5 0.17 1.3 0.014140.01830.1730.09}10.11F§16.9 uss
) 0.09 0.8210.02040.01530.22410.08}30.291]24.9 1SS

USS - United Statecs Steel Corporation, Monroeville, PPennsvlvania

NRL - Naval Research Laboratory, Washington, D.C.
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TABLE 11

Test Solutions

Concentrations of Chloride ion (as NaCl) tested at each pH.

Ni1, 10°%, 1073, 1072, 1071, 10°, Saturated

Buffer

0.0160M NaOHll + ,0740M K[Iqul404

0.0380M NaOll + 0.0520M KIIC H404

();

8

0.0455M NaOH + 0.0455M KHC8H4 1

0.1000M NallCO3
0.0020M NaOH + 0.0220M Na, B407.10H,0

B,0,.1011,0

0.0215M NaOH + 0.0100M Na2 407 2

0.0012M NaOH
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10.

TABLE IX

Magna Anatrol Potentiostat Model 4700M with attached Linear-
Scan Model 4510.

Hewlett-Packard Sanborn Differential Amplifier Model 8875A.
Hewlett-Packard Logarithmic Converter Model 7561A.
Varian X - Y Recorder Model F110 (X - Y).

Leeds and Northrup Standard 1191-31 Calomel Reference
Electrode.

Keithley Electrometer Model 602.
Keithley pll Electrode Adapter Model 6013.
Hewlett-Packard Moseley Model 680 Strip Chart Recorder.

E/MC Corporation Ultrasonic Cleaner Model BP-1.

Duo Seal Vacuum Pump Mcdel 1405H.
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FIGURE 7: Potentiokinetic Curve (Potential versus Current Density)
0.5% Chromium Alloy, pH = 10.8.
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FIGURE 13: Potential versus Log Chloride lon Molarity.
0.5% Chromium Alloy, pit = 5.5.
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FIGURE 15: Potential versus Log Chloride Ion Molarity
0.5% Chromium Alloy, pH = 10.8.
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